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Learning Common Harmonic Waves on Stiefel
Manifold – A New Mathematical Approach

for Brain Network Analyses
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Abstract— Converging evidence shows that disease-
relevant brain alterations do not appear in random brain
locations, instead, their spatial patterns follow large-scale
brain networks. In this context, a powerful network analysis
approach with a mathematical foundation is indispensable
to understand the mechanisms of neuropathological events
as they spread through the brain. Indeed, the topology
of each brain network is governed by its native harmonic
waves, which are a set of orthogonal bases derived from
the Eigen-system of the underlying Laplacian matrix. To that
end, we propose a novel connectome harmonic analysis
framework that provides enhanced mathematical insights
by detecting frequency-based alterations relevant to brain
disorders. The backbone of our framework is a novel man-
ifold algebra appropriate for inference across harmonic
waves. This algebra overcomes the limitations of using
classic Euclidean operations on irregular data structures.
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The individual harmonic differences are measured by a set
of common harmonic waves learned from a population of
individual Eigen-systems, where each native Eigen-system
is regarded as a sample drawn from the Stiefel manifold.
Specifically, a manifold optimization scheme is tailored to
find the common harmonic waves, which reside at the
center of the Stiefel manifold. To that end, the common
harmonic waves constitute a new set of neurobiological
bases to understand disease progression. Each harmonic
wave exhibits a unique propagation pattern of neuropatho-
logical burden spreading across brain networks. The sta-
tistical power of our novel connectome harmonic analysis
approach is evaluated by identifying frequency-based alter-
ations relevant to Alzheimer’s disease, where our learning-
based manifold approach discovers more significant and
reproducible network dysfunction patterns than Euclidean
methods.

Index Terms— Brain network, manifold optimization,
harmonic waves, computer-assisted diagnosis.

I. INTRODUCTION

RECENT advances in neuroimaging offer an in-vivo
and non-invasive window for investigating connectivity

between brain regions [1]–[3]. For example, the combination
of diffusion-weighted magnetic resonance imaging (DW-MRI)
and tractography technology can be used to reconstruct major
fiber bundles in the brain allowing for the visualization of
the structural pathways that connect distant brain regions [4].
The ensemble of macroscopic brain connections can then be
described as a complex network - the ’connectome’. Various
computational and statistical inference methods have been
developed to characterize diverse properties of complex net-
works and then identify network differences in terms of nodes,
links, or even subgraphs that are associated with neurological
disorders [1], [3].

Due to the high dimensionality of brain connectome
data, it is a common practice to analyze node-wise graph
variables such as local clustering coefficient and small-
worldness [5], instead of using whole-brain connectivity infor-
mation. By doing so, however, it becomes difficult to discover
topological patterns which are an essential aspect of network
analyses. On the other hand, there are also a plethora of
methods proposed to quantify network changes at the level of
individual links rather than nodes [1], [6]–[11]. Like node-wise
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Fig. 1. Conventional methods (top) apply the classic Euclidean oper-
ations on the graph structure. Such rigid operations underestimate the
irregular data structures and yield poor performances. In comparison, our
learning-based approach (bottom) fully respects the irregular graph data
structure and discovers brain network harmonics on the Stiefel manifold.

analyses, link-wise analyses are univariate in nature and dis-
regard the multivariate network structure. In addition, due to
high dimensionality, link-wise significance tests necessitate
strict multiple-comparison correction to alleviate the issue
of false positives, which potentially discards scientifically
meaningful links [12].

Many neuroimaging studies have found that the progres-
sion of neuropathology follows the topology of large-scale
networks in the brain [1], [3], [13]–[15]. For instance, a net-
work diffusion model was used in [13], [14] to predict the
disease progression in dementia, where the diffusion process
is governed by the Laplacian matrix of the underlying brain
network. Like various natural phenomena, the Eigen-system
of the Laplacian also constitutes the basis of self-organizing
patterns (shown in the bottom of Fig. 1), where each specific
harmonic wave is indeed the Eigen-vector associated with a
particular frequency (Eigen-value). Harmonic-based analyses
have been used to investigate frequency-based alterations in
neuropsychiatric diseases [16], [17] and functional neural
activity [18]. Since the harmonic waves are orthogonal to each
other, encoding brain connectivity via the harmonic domain
offers great flexibility for the analysis of group differences.

As mentioned above, current harmonic analysis approaches
have two major limitations. (1) Lack of an unbiased reference
to measure the difference between individuals. In general,
an unbiased reference domain is necessary for conducting
group comparisons to provide standardized measurements for
the statistical analyses. For example, since intrinsic structural
differences are often mixed with external differences (such
as the size and shape of the brain), an atlas image is used
as a standard spatial reference for voxel-based morphometry
(VBM) [19]. The morphometry differences of interest (such
as gray matter density [20]) among the spatially normalized
images are thought to be more relevant to neurobiological
processes. Yet, different networks lead to various Eigen-
systems, and thus a harmonic reference space for brain net-
works needs to represent the common set of harmonic waves
that can appropriately represent the majority of the individual
Eigen-systems. (2) Lack of the appropriate manifold algebra.
Despite the well-known importance of a reference space in
neuroimaging, finding such reference spaces for manifold data,
such as brain networks, it is still an open problem as the

complexity of data geometry (topology) is beyond regular
data arrays [21], [22]. As shown in the top of Fig. 1, current
approaches treat high-dimensional network data as a regular
matrix or vector. Although applying Euclidean algebra to
average brain networks [16] or diffuse connectivity informa-
tion [23] on a link-wise basis is straightforward, the resulting
group-mean network may no longer contain the essential
network topology disrupting the geometry of Eigen-systems.

A. Relevant Works

The manifold learning technique has gained popularity in
recent studies that use network analyses. For instance, a geo-
desic distance metric on Riemannian manifold was proposed
in [24] to measure the similarity between two Laplacian matri-
ces in a twin study. In addition, the kernel trick has been used
to integrate the distance metric defined on Grassmannian man-
ifold with a support vector machine to identify Autism subjects
based on functional brain network data in [25]. Recently,
Dai et al. proposed manifold based approaches to detect
changing points [26] and compare functional brain net-
works [27], with the focus on symmetric positive defi-
nite (SPD) subspace of Riemannian manifold. Although none
of the existing methods address the problem of unifying
individual harmonic waves on the Stiefel manifold, manifold
learning has been proven its efficiency in analyzing network
and graph data that has intrinsic geometry.

B. Our Contributions

We propose a novel manifold learning method to discover
the unbiased population mean of individual Eigen-systems.
Since each Eigen-vector is orthogonal to all others, it is
reasonable to assume that each Eigen-system behind the
individual brain network resides on a high-dimensional Stiefel
manifold [28]. Since each Eigen-system is uniquely associated
with the corresponding underlying propagation patterns in
the brain network, the well-studied Stiefel manifold (red
arrow in Fig. 1) allows us to find a set of common bases
that appropriately express the network propagation patterns,
as compared to Euclidean algebra which lacks well-defined
algebraic operators for manifold data.

Specifically, our method iteratively alternates two steps.
(1) Adjust each native Eigen-system toward the latent manifold
mean. The construction of each Eigen-system is not only influ-
enced by the underlying Laplacian matrix but also attracted by
the latent common harmonic waves at the manifold center.
(2) Update the manifold center. We first project each
Eigen-system to the tangent space at the current manifold
center. Then, we estimate the mean tangent which points to the
new location of the manifold mean. After mapping the mean
tangent back to the Stiefel manifold, we can obtain the new
estimation of the manifold center that is used to guide the
refinement of individual Eigen-systems in Step 1. The outcome
of our manifold optimization is a set of orthogonal vectors
located at the manifold center, which represent the common
harmonic waves learned over the population of brain networks.

As each harmonic wave exhibits a unique self-organized
oscillation pattern across the brain network, our learned set of
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TABLE I
LIST OF NOTATIONS USED IN THIS PAPER

common harmonic waves offers a new window to investigate
the mechanism of neurodevelopment or neurodegeneration
in the setting of brain networks using the classic physics
concepts such as power and energy [17]. We have evaluated
the statistical power of our new network harmonic analysis
approach in a brain network study of Alzheimer’s disease
(AD). Compared to the conventional approach [16] using
Euclidean operations, more statistically significant and reliable
frequency-based alterations have been discovered using the
common harmonic waves learned on Stiefel manifold.

II. METHOD

First, we provide the brief background on spectral graph
theory and Stiefel manifold optimization in Section A. The
motivation for discovering common harmonic waves for brain
network analyses is explained in Section B. Then we present
our manifold learning method for common harmonic waves in
Section C, followed by the optimization scheme in Section D.
The application of the learned common harmonic waves using
a neuroimaging dataset is demonstrated in Section E. The
notation used in this paper is summarized in Table I for ease
of exposition.

A. Background

1) Graph Spectrum and Harmonic Waves: Each brain net-
work can be encoded in a graph G = (V , E, W), where
V = {vi |i ∈ 1, · · · , n} represents the node set with n nodes
and E = {

ei j |(vi , v j ) ∈ V × V
}

is the set of all possible links.
Let W ∈ R

n×n be a weighted adjacency matrix where each
element wi j in W measures the connectivity strength between
node vi and v j . Then the symmetric graph Laplacian matrix L
of the underlying graph can be calculated by:

L = D − W (1)

where D = diag (d1, d2, . . . , dn) is the degree matrix of the
graph. Each diagonal element equals to the total connectivity
degree of the underlying node, i.e., di = ∑n

j=1 wi j .

A set of harmonic waves � can be obtained by:
min

�∈Rn×n
tr

(
�T L�

)
, s.t . �T� = I p (2)

where tr(·) is the trace operator and I p ∈ R
p×p stands for

the identity matrix. The optimization problem in Eq. (2) has
the deterministic solution �̂, which is the set of Eigen-vectors
of the matrix L. Without loss of generality, we can sort each
Eigen-vector in �̂, column by column, in increasing order of
Eigen-values. Given the connected graph G (i.e., no isolated
nodes), the first smallest Eigen-value is always zero, and each
element in the associated Eigen-vector is a constant. As the
Eigen-value increases, the corresponding Eigen-vector exhibits
more and high-frequency patterns (more rapid and localized
oscillations) across the brain network, as shown in the bottom
of Fig. 1.

The Stiefel manifold is a well-studied space and is defined
as a set of ordered orthonormal p-frames of vectors in R

n ,
denoted by V(n, p). In this context, any matrix X ∈ R

n×p

can be regarded as a point sitting on Stiefel manifold V(n, p)
as long as X is an orthogonal matrix, i.e., XT X = I p . A special
case is when p = 1, the Stiefel manifold reduces to the
set of all unit vectors, which forms the unit sphere. Another
special case is when p = n, the Stiefel manifold is the
group of orthogonal n × n matrices V(n, n) ∈ On . Since
there is no analytical formula for endpoint geodesics on the
Stiefel manifold (i.e., locally shortest length curves between
two points X ∈ V(n, p) and Y ∈ V(n, p)), it is common to
approximate the geodesic between X and Y in the ambient
space by the following squared distance [28]:

d2 (X, Y) = 1

2
tr (X − Y)T (X − Y) = p − tr(XT Y) (3)

2) Gradient Descent Optimization on Stiefel Manifold: For a
point X ∈ V(n, p), the tangent space TX at X consists of a set
of tangents {�} such that XT � = 0. Suppose a real-valued
function F is smooth on the Stiefel manifold, the gradient of
function F at X, i.e., ∇X F ∈ TX , can be obtained by [29]:

∇X F = FX − X FT
X X (4)

where FX stands for the matrix derivative of function F with
respect to X. The gradient calculation in Eq. 4 plays an impor-
tant role in the application of Stiefel manifold optimization
such as nonlinear mean shift [30]. The efficient calculation
of the manifold gradient on the flattened tangent space offers
a reasonable descent direction for optimizing function F on
the manifold. After that, an exponential mapping operation
is required to map a tangent � ∈ TX back onto the Stiefel
manifold by:

ex pX (�) = XB + QC (5)

where the matrices B, Q, and C are calculated in two steps.
(1) Apply compact QR decomposition of (I − XXT )� [31]
and thus obtain matrices Q ∈ R

n×p and R ∈ R
p×p . (2) Solve

B ∈ R
p×p and C ∈ R

p×p by:[
B
C

]
= exp

([
A −RT

R 0p

]) [
I p

0p

]
(6)

where A = XT � is a p × p matrix and 0p ∈ R
p×p stands for

the zero matrix.
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B. Problem Statement

For each brain network Gs (s = 1, . . . , m), we can obtain
its set of harmonic waves �s (an orthogonal matrix) by
applying Eigen-decomposition on its Laplacian matrix Ls .
We are interested in finding the mean (denoted by �) of
m individual harmonic waves {�s |s = 1, . . . , m}, where �
is called the common harmonic waves, which are also an
orthogonal matrix.

Although it is efficient to calculate � by simple averaging,
i.e., �̄ = 1

m

∑m
s=1�s , the column vectors in �̄ are not

orthogonal to each other any longer, which compromises
the applicability of �̄ as the meaningful harmonic waves.
Considering that each harmonic set �s resides on the high
dimensional Stiefel manifold MH , the common harmonic
waves �̄ generated by arithmetic averaging results in a �̄
may not be directly located on the same manifold as all the
individual harmonic waves.

An alternative way is to average over the adjacency matrices
{Ws |s = 1, . . . , m} and then calculate the Eigen-system �̃

based on the Laplacian matrix which is derived from the
average of adjacency matrices W̄ = 1

m

∑m
s=1 Ws . However,

such Euclidean operations are highly sensitive to noises
and/or outlying data points. In addition, a heuristic assumption
that the intrinsic complex geometry of brain network and
Eigen-system data can be well expressed in Euclidean space is
difficult to satisfy. As pointed in [32], the arithmetic average
of adjacency matrices suffers from swelling effect, i.e., the
determinant of the average matrix is often much larger than
any of the original determinants. Such an inflated determinant
artificially disrupts the essential topological properties of brain
networks.

Given that each harmonic set �s is an orthogonal matrix,
it is reasonable to consider finding the latent common har-
monic waves � on the Stiefel manifold. As we will show in
Section II.C, there is no closed-form solution for calculating
common harmonic waves. Instead, we propose a gradient
descent based optimization scheme to iteratively find the com-
mon harmonic waves �. To that end, manifold optimization
is of necessity to maintain the intrinsic data geometry.

It is worth noting that the graph spectrum of each brain
network is spanned by its harmonic waves �s , sorted from
low frequency to high frequency [21]. Since the harmonic
waves associated with high frequency (larger eigenvalues)
are more sensitive to possible noise, we only consider the
first p (p ≤ n) harmonic waves in each �s . In the following,
we regard�s ∈ MH (MH ⊂ V(n, p)) as an n× p orthogonal
matrix unless otherwise stated.

C. Learning Common Harmonic Waves on Stiefel
Manifold

Given m Laplacian matrices {L1, L2, . . . , Lm}, we simul-
taneously estimate the native harmonic waves �s for each
Ls and optimize the common harmonic waves �, which are
both optimized on the Stiefel manifold MH . Specifically,
we require the latent common harmonic waves to be located
at the manifold center that has the shortest geodesic distances
to all individual harmonic waves {�s}. To that end, we opt to

minimize
∑m

s=1 d2(�s,�). By integrating Eq. 2 and Eq. 3,
the objective function becomes:

min{�s },�
∑m

s=1

{
tr

(
�T

s Ls�s

)
+ λ(p − tr(�T

s �)
}

s.t . ∀s : �T
s �s = I p (7)

where λ is a scalar balancing two terms in Eq. 7. Specifically,
the trace norm (the first term in Eq. 7) is used to require
each set of harmonic waves �s reflect the graph spectrum of
its own Laplacian matrix Ls . The second term is a manifold
distance constraint that ensures the common harmonic waves
� is close to all individual harmonic waves {�s}. Since
the trace norm is not exactly an intrinsic manifold metric,
we keep the orthogonal constraint, i.e., �T

s �s = I p (∀s),
in the objective function, to ensure the estimated {�s} are
located on the Stiefel manifold. Since the optimization of �
is completely driven by the intrinsic Stiefel manifold geometry
(sub-problem 2 in Section II.D), we do not explicitly add the
constraint �T� = I p in the objective function.

Given that it is computationally expensive to estimate
individual and common harmonic waves jointly, we propose
the following gradient descent manifold optimization under
the framework of ADMM (Alternating Direction Method of
Multipliers) [33], where the augmented Lagrange function
becomes:

arg min{�s },�

m∑
s=1

F�s ,�

= arg min{�s},�

m∑
s=1

{
tr

(
�T

s Ls�s

)
+ λ

(
p − tr

(
�T

s �
))

+ tr(�T
s (�T

s �s − I p))
}
, (8)

where each �s (s = 1, . . . , m) is a p × p factor matrix of the
Lagrange multipliers.

D. Optimization Scheme

We optimize the objective function in Eq. 8 in two
alternative steps.

Sub-Problem 1 (Estimating Each Native Harmonic set �s):
Since the harmonic waves {�s} are independent, we can
estimate each �s separately by fixing �. By dropping the
unrelated variables, the objective function becomes:

arg min
�s

F�s = arg min
�s

{
tr

(
�T

s Ls�s − λ�T
s �

)
+ tr(�T

s (�T
s �s − I p))

}
(9)

It is worth noting that the individual harmonic waves �s

are not only determined by their own Laplacian matrix Ls , but
are also influenced by the latent common harmonic waves �.
Since Eq. 9 is a typical quadratic problem on the Stiefel mani-
fold, it is often required that Ls is positive definite. Therefore,
we first replace Ls with L̃s = βI − Ls , where a relaxation
parameter β is used to ensure L̃s is a positive definite matrix.
We set β as the greatest eigenvalue of Ls . By doing so,
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the minimization of Eq. 9 becomes the maximizing:
arg max

�s
F̃�s = arg max

�s

{
tr

(
�T

s L̃s�s

)
+ λtr

(
�T

s �
)

− tr(�T
s (�T

s �s − I p)
}

(10)

The last term in Eq. 10 is the Lagrange multiplier. We can
solve �s via the KKT condition as:

∂ F̃�s

∂�s
= 2L̃s�s + λ� − 2�s�s = 0 (11)

To overcome the instability as well as reduce the com-
putational cost caused by the matrix inversion involved in
L̃s and �s, we adopt the generalized power iteration (GPI)
from [34] to iteratively optimize�s in the following four steps:

(1) Initialize �s as the Eigen-vector matrix after applying
SVD to the underlying Laplacian matrix Ls .

(2) Update �← L̃s�s + λ� .
(3) Calculate �s by maximizing tr(�T

s �) and subject it to
the orthogonal constraint �T

s �s = I p . We can derive
the closed-form solution by �s = UVT , where U and
V are the left and right Eigen matrix after the full SVD
on �. (please refer to [34] for detail)

(4) Iteratively perform the steps (2)-(3) until convergence.

Sub-Problem 2 (Estimating the Common Harmonic Set �):
Given the individual harmonic waves {�s}, the objective
function of � is:

arg min
�

m∑
s=1

d2(�s,�) = arg min
�

m∑
s=1

(p − tr(�T
s �)) (12)

The intuition behind in Eq. 12 is to find the latent mean �
on the Stiefel manifold which has the shortest geodesic dis-
tances to all the observed samples {�s} residing on the Stiefel
manifold. Thus, our optimization falls into the classic problem
of solving the Fréchet mean on the Stiefel manifold which can
be efficiently solved by adopting the Weiszfeld algorithm [35].
Specifically, we alternately perform the following two steps
until convergence:

(1) Suppose �(k) is the current estimation of the manifold
center. We calculate the gradient ∇� of the energy function
in Eq. 12 with respect to each �s as: ∇�d2

(
�(k),�s

) =
�(k)�T

s �
(k) − �s , which are denoted by the black arrows

in Fig. 2. Then, the mean tangent ��(k+1) ∈ T� can be
efficiently obtained by:

��(k+1) = −
∑m

s=1
∇�d2

(
�(k),�s

)
= −

∑m

s=1
(�(k)�T

s �
(k) −�s) (13)

As demonstrated in [35], ��(k+1) (red triangle on tangent
plane T�(k)MH in Fig. 2) is the updated position of the
estimated mean and the red arrow specifies the direction from
the prior estimation �(k) to the new latent mean on the
manifold.

(2) We map the mean tangent ��(k+1) back to the Stiefel
manifold to obtain the new estimation of the manifold center
�(k+1) = ex p�(k) (��(k+1)) (red circle in Fig. 2) by Eq. 5-6.

By iteratively calculating the optimal descent direction and
mapping it back to the Stiefel manifold, we can obtain the

Fig. 2. Illustration for the optimization of common harmonic waves on
the Stiefel manifold. Individual harmonic waves (blue solid circle) are
located on the Stiefel manifold MH (blue hemisphere). The individual
harmonic waves are projected to corresponding point (grey triangle) in
the tangent space T

�(k)MH (grey flat plane) of kth manifold mean �(k)

(red hollow circle). The mean tangent (red triangle) is calculated based
on all gradient directions (black arrow). Finally, the new manifold mean
�(k+1) (red solid circle) is estimated by mapping the mean tangent back
to the Stiefel manifold. The manifold trajectory from �(k) to �(k+1) is
depicted by purple arrow.

optimal manifold mean �, i.e., the common harmonic waves.
The entire optimization scheme is summarized in Table II.

Discussion: Regarding the dimension reduction, we deter-
mine p based on the distribution reconstruction error between
the observed Laplacian matrix and the reconstructed Laplacian
matrix using only the top p smallest Eigen-values and Eigen-
vectors. Empirically, we select p around the tipping point that
the decrease of reconstruction error is only marginal as p
increases. Since our objective function (Eq. 7) is not invariant
to any orthogonal matrix Q (Q ∈ R

n×p , QT Q = I), we opt
to optimize the common harmonic waves � on the Stiefel
manifold, instead of the Grassmann manifold [36].

It is worth noting that the overarching goal is to find the
unbiased common harmonic bases which allow us to under-
stand the cortical spreading pathway of neurodegenerative
burdens. In this work, we only focus on unifying harmonic
waves, rather than the entire Eigen-system which includes both
Eigen-vectors and Eigen-values. Thus, our proposed method
is not designed to establish the one-to-one correspondence of
harmonic waves across individuals. As shown in Table II, our
optimization scheme consists of two subproblems. The proof
of solving Eq. 9 using GPI is supported by the theorem 1-2
in [34]. The Weiszfeld algorithm [35] has been used in many
computer vision applications with proof of convergence.

E. Application in Network Neuroscience

Advanced neuroimaging technology such as MRI and
diffusion-weighted MRI allows us to study white matter fiber
tracks associated with the progression of cognitive decline.
Mounting evidence shows that neurodegenerative diseases
such as Alzheimer’s disease (AD) can be understood as a
disconnection syndrome where the large-scale brain network
is progressively disrupted by neuropathological processes [3].
Our proposed harmonic-based network analysis approach
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TABLE II
ALGORITHM FOR COMMON HARMONICS DETECTION

provides a new methodology to analyze these spatio-temporal
neuropathological changes in the progression of AD.
Specifically, we assert that the brain is capable of vibrating
at a preference frequency (aka. resonance frequency) like any
natural object in the universe. In this context, we hypothesize
that the resonance between the spatial pattern of pathological
burdens and the oscillation pattern in the harmonic waves is
the driving force of spreading the neurodegenerative process.

1) Image Processing: As shown in Fig. 3, for training
data, according to a Desctrieux atlas [37], we parcellate the
cortical surface into 148 cortical regions based T1-weighted
MR image and then apply surface seed-based probabilistic
fiber tractography [37] using the diffusion tensor imaging
(DTI) data, thus producing a 148×148 anatomical connectivity
matrix. Note, the weight of the anatomical connectivity is
defined by the number of fibers linking two brain regions
normalized by the total number of fibers in the whole brain.
For testing data, we calculate the mean cortical thickness as
well as the standard uptake value ratio (SUVR) of the amyloid
deposition for each brain region and then assemble them into
a column vector, denoted by f s .

2) Harmonic Analyses: Harmonic analysis for network neu-
roscience was explored in [13], [16], where the well-studied

Fig. 3. Image processing pipeline to construct structural brain network
from diffusion-weighted MR images.

physics concepts of harmonics such as power and energy have
been introduced to quantify the neural activities on brain net-
works. Specifically, the power of each common harmonic wave
ψh (hth column vector in �) measures the velocity of flow of
brain activity for each unique self-organized oscillation pattern
across brain networks. The energy of each ψh measures the
amount of flow of brain activity.

Conventional neuroimaging studies use empirical biomark-
ers such as region-wise cortical thickness or amyloid level to
investigate the pathophysiological mechanism of Alzheimer’s
disease. In this work, we present a novel harmonic analysis
approach to discover the frequency-based alterations that are
associated with the cortical spreading pathway of neurodegen-
erative burdens across brain networks. For each common har-
monic wave, we first calculate the harmonic power coefficient
of ψh to the observed empirical biomarker level ( cortical
thickness or amyloid deposition) vector f s of sth individual
subject by:

αs
h = 〈f s,ψh〉 (14)

Furthermore, we can calculate the corresponding harmonic-
specific energy of ψh by:

Es
h = ∣∣as

h

∣∣2 (15)

The total harmonic energy of brain injury (manifested by
cortical thickness or amyloid deposition) with respect to the
harmonic waves � is measured by:

Es
total =

∑p

h=1
Es

h (16)

III. RESULTS

To evaluate the power of our new network harmonic analysis
approach, we compare the performance of using the common
harmonics � optimized by our manifold learning method to
three alternative sets of harmonic waves: (1) �̄ by simple
averaging individual Eigen-systems, (2) �̃ by first averaging
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the adjacency matrices and then applying SVD to the average
adjacency matrix. and (3) �̌ by only estimating Fréchet mean
from a population of individual Eigen-systems on Stiefel
manifold without adjusting each individual Eigen-system
(a simplified version of our proposed method). In the fol-
lowing, we call �̄, �̃, �̌ and � as the arithmetic mean
(aka. arithmetic harmonic waves), the pseudo manifold mean
(aka. pseudo harmonic waves), the Fréchet mean (aka. Fréchet
harmonic waves), and Stiefel manifold mean (aka. our com-
mon harmonic waves), respectively. In addition, we adopt
a grid search strategy to determine the optimal value for
parameter λ from 0.0005 to 0.2, where we find λ = 0.01
gives the highest classification between CN and AD subjects
(see Section III.B4 for detail). Thus, we fix λ = 0.01 in all
the following experiments.

A. Experiments on Synthetic Data

First, we use the following low dimension synthetic data
to demonstrate the accuracy of the manifold center by our
proposed method. Here, we synthesize a set of 3D orthonormal
rotation matrices as individual harmonic waves, which are
represented as the unit quaternions. A quaternion is denoted as
q = (a, v), where a is the real quantity and v = bi + cj + dk
with three imaginary quantities (b, c, d). Let e = (1, 0) be the
identity quaternion. The transformation between quaternion
and rotation matrix can be represented as

R =
⎡
⎣ 1 − 2c2 − 2d2 2bc − 2ad 2ac + 2bd

2bc + 2ad 1 − 2b2 − 2d2 2cd − 2ad
2bd − 2ac 2ab + 2cd 1 − 2b2 − 2c2

⎤
⎦
(17)

where a = cos
( 1

2θ
)
, b = sin

( 1
2θ

)
ux , c = sin

( 1
2θ

)
uy ,

d = sin( 1
2θ)uz , as well as θ and u = (ux , uy, uz) denote

rotation angle and rotation axis, respectively.
We generate a random collection of twenty quaternions

as follows. First, we set the quaternion with no rotation as
the ground truth (starting point), which is displayed in green
in Fig. 4. Second, given rotation axis u, the rotation angles
are sampled from a zero-mean Gaussian distribution with a
standard deviation σ = π/15. Third, twenty rotation matrices
are obtained through Eq. 17, centered on the identity matrix.
Among them, ten rotation matrices are shown in the first two
rows of Fig. 4.

Since we do not have the adjacency matrices, we apply
naïve averaging and our Stiefel manifold learning method
to estimate the common quaternion from the 20 random
perturbative quaternions. The arithmetic mean �̄ and our
Stiefel manifold mean � are shown in Fig. 4(b) and (c),
respectively. It is clear that (1) The Stiefel mean is very close
to the ground truth on the manifold; (2) The arithmetic mean is
not located on the manifold surface (non-orthogonal matrix),
as the three rotation axes are not perpendicular to each other;
(3) Our iterative manifold optimization can quickly converge
to the latent manifold mean, as indicated by the red trajectory
in Fig. 4. Although we initialize our optimization from a single
individual quaternion (#10) in Fig. 4, no significant difference
has been found across the Stiefel mean results initialized with

Fig. 4. Comparison of arithmetic mean and our Stiefel manifold mean
across individual orthonormal matrices. Top: 10 examples of matrices
(first two rows) generated by different rotation of identity matrix (a).
Bottom: the ground truth (a), arithmetic mean (b), and our Stiefel manifold
mean (c) on the Stiefel manifold (d). It is clear that the manifold center
estimated by our manifold optimization method is more reasonable than
the arithmetic mean which uses simple averaging operation defined in
the Euclidean space.

TABLE III
DEMOGRAPHIC INFORMATION OF TRAINING DATA IN ADNI DATABASE

different individual quaternions. We will further examine the
replicability in Section III.B2.

B. Experiments on Real Data of Alzheimer’s Disease

1) Description of Datasets and Experiment Setup:
a) Training data for learning common harmonic waves: In

total, 94 subjects were selected from the ADNI database
to learn the common harmonic waves, which consisted
of 35 Cognitive Normal (CN), 24 Mild Cognitive Impairment
(MCI), and 35 Alzheimer’s Disease (AD). Each subject had
both T1-weighted MRI and diffusion-weighted MRI scans.
The demographic information is shown in Table III. Follow-
ing the image processing pipeline in Fig. 3, we constructed
the structural network for each subject which consisted of
148 nodes.

b) Testing data for identifying frequency-based alterations in
AD: In addition, we selected another 50 CN subjects, 44 MCI
subjects, and 47 AD subjects from ADNI data as the testing
data. As was done with the training data, the cortical surface
of each subject was parcellated into 148 regions, and the mean
cortical thickness and the standard uptake value ratio (SUVR)
of amyloid deposition for each region were computed.
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For testing data, we no longer provided the structural network
information.

c) Experiment setup on real AD network data: In the fol-
lowing experiments, we compare the performance among the
arithmetic mean �̄ , the pseudo manifold mean �̃, the Fréchet
mean �̌, and the Stiefel manifold mean � . The number of har-
monic waves p is set to 60 and the parameter λ is set to 0.01.
First, we evaluate the replicability of the common harmonic
waves using our proposed learning-based method via a resam-
pling test in Section III.B2. Next, we investigate whether the
oscillation patterns in the common harmonic waves underline
the neurodegenerative process in Section III.B3. Furthermore,
we evaluate the diagnostic value of our harmonic feature
representations in Section III.B4, with the comparison to
empirical AD biomarkers. Finally, we apply the learned com-
mon harmonic waves to identify harmonic-based alterations in
the cortical thickness (Section III.B5) and amyloid deposition
data (Section III.B6).

2) Evaluationof the Replicability: In this experiment, we eval-
uate the replicability of the learned common harmonic waves
via resampling tests. Specifically, we apply the following
resample procedure to generate 50 test/retest datasets from
the training data: (1) randomly sample 70 networks from
the 94 training network data; (2) continue to sample another
two sets of networks from the remaining 24 subjects sepa-
rately, each with 5 networks; (3) form two paired cohorts
by combining the networks sampled in step 1 and 2. Then,
we deploy our Stiefel manifold learning method on two
datasets independently. Because two paired cohorts only have
6.7% (5/75) differences in terms of network data, we can
evaluate the replicability of our method by examining whether
there exists a significant difference at each element in the
harmonic waves via the paired t-test. Fewer elements showing
significance indicates better replicability. Since each row in
the harmonic matrix is associated with one brain region,
we can map the significant findings (p < 0.01) onto the
cortical surface in Fig. 5(a-d). It is apparent that (1) The
manifold learning methods, Fréchet mean �̌ and our manifold
mean �, yield more consistent (more replicable) common
harmonic waves than pseudo manifold mean �̃ across the
test/retest datasets in the resampling test, while our common
harmonics � achieves even better replicability than Fréchet
common harmonics �̌; (2) Although the arithmetic mean �̄
has similar replicability performance as our common harmonic
waves � , the orthogonality is often not guaranteed in �̄ by
arithmetic averaging (see the results on synthesized data in
Fig. 4(b)).

3) Association Between the Oscillation Patterns in Harmonic
Waves and Neurodegenerative Process: In this experiment,
we are investigating whether the learned common harmonic
waves capture information related to the neurodegenerative
process in AD. After we compute the common harmonic
waves on the training data, we repeat the following steps on
the testing data with 100 replicates: (1) randomly select 30 out
of 47 AD subjects and 30 out of 50 CN subjects as training
data and form the amyloid vector f ; (2) identify the harmonic
power difference αh between CN and AD for each harmonic
wave ψh ; (3) calculate positive power α+

h = 〈 f ,ψ+
h 〉 and

Fig. 5. The replicability test results of the arithmetic harmonic waves
�̄ (a), pseudo harmonic waves �̃ (b), Fréchet harmonic waves �̌ (c)
and our common harmonic waves � (d), where the color on the cortical
surface reflects the number of times with failed replicability tests.

TABLE IV
STATISTICS OF KINETIC POTENTIALS

negative power α−
h = ∣∣〈 f ,ψ−

h 〉∣∣ of the remaining 37 subjects
(testing data), where ψ+

h and ψ−
h present the positive-only

and negative-only segments in each ψh ; (4) apply the t-test
to detect the statistical CN vs AD difference of

∣∣α+
h − α−

h

∣∣
on each harmonic identified in (2). Since we assume that the
resonance between the spatial pattern of AD biomarkers and
the oscillation pattern in the harmonic waves is the driving
force of the neurodegenerative process in AD,

∣∣α+
h − α−

h

∣∣
approximately reflects the potential of neurodegenerative bur-
dens between up peaks (positive segment) and bottom peaks
(negative segment) within each harmonic wave ψh .

First, we find that on average 12.8% (7.69/60) arithmetic
harmonic waves, 13.4% (8.01/60) pseudo harmonic waves,
14.6% (8.76/60) Fréchet harmonic waves, and 16.5% (9.87/60)
our common harmonic waves show significant harmonic power
differences (FDR-adjusted p < 0.01) in the amyloid data in
step (2) using the Benjamini-Hochberg (BH) procedure [38].
The detailed statistics are shown in Table IV. It is clear that
the oscillation patterns exhibiting in our common harmonic
waves are more aligned with the neurodegenerative process
in AD.
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TABLE V
CLASSIFICATION RESULTS OF USING EMPIRICAL BIOMARKER FEATURES AND HORMONIC-BASED FEATURE REPRESENTATIONS

Fig. 6. Statistics results of the association between the oscillation
patterns in harmonic waves and the neurodegeneration process. Please
see the above text for more information.

Next, we test the hypothesis that the positive-negative
harmonic power difference (kinetic potentials of amyloid level
due to the oscillations in harmonic waves) between a+

h and a−
h

is the factor leading to such significance. The rationale is that
the oscillation patterns in the harmonic waves are correlated
with the observations of pathological burdens if not only
(1) the harmonic power shows significant differences between
CN and AD, but also (2) the positive-negative power differ-
ences also manifest significant differences between CN and
AD. As such, the observed harmonic waves can serve as
biological indicators (factors) for the progression of AD. As a
piece of evidence for the above hypothesis, we display the
oscillation mapping of both a significant and a non-significant
harmonic wave on the cortical surface in Fig. 6(a) left and
Fig. 6(b) left, respectively. This visualization also shows the
associated cortical mapping of elementwise vector multipli-
cation between ψh and f at the right side of Fig. 6(a)-(b).
It is apparent that the two cortical mappings for the significant
harmonic wave in Fig. 6(a) have a strong resemblance, which
is also supported by the statistical significance between α+
and a− (p < 10−4). On the contrary, such resemblance is not
presented in the non-significant harmonic wave (Fig. 6(b)),
where no significance has been detected between α+ and a−
(p = 0.11).

As shown in the last column in Table IV, 62% (6.16
/

9.87)
of the identified significant common harmonic waves in �

support such a hypothesis since average 6.16 common har-
monic waves exhibit the statistical significance of

∣∣α+
h − α−

h

∣∣
(p < 10−3) in step (4). As a comparison, we find 48%

(3.67
/

7.69), 24% (1.93
/

8.01), and 61% (5.30
/

8.76) of the

harmonics in �̄, �̃ and �̌ show CN vs AD significance in both
harmonic power αh and positive-negative power difference∣∣α+

h − α−
h

∣∣. The results in Table IV indicate that the oscillation
patterns in our learned common harmonic waves have more
statistical correlations with pathological neurodegeneration
events. In the following experiments, we further demonstrate
the potential of our common harmonics in practical clinical
applications through classification task, compared with other
approaches (B4). Finally, we apply our learned common
harmonic waves � to identify frequency-based harmonic alter-
ations in the context of neurodegeneration biomarker measured
by the cortical thickness (B5) and amyloid deposition (B6).

4) Investigating the Diagnostic Value of Harmonic Based
Feature Representations: In this experiment, we evaluate the
diagnostic value of our harmonic based feature presentations
in identifying AD subjects. Specifically, we use the harmonic
energy of cortical thickness (or amyloid) as the feature to train
the CN vs AD classifier using a linear support vector machine
(SVM). To compare the classification performance across
harmonic estimation methods, we extract harmonic features
based on arithmetic harmonic waves, pseudo harmonic waves,
and Fréchet harmonic waves, and train the SVM separately.
To show the advantage of harmonic features over the conven-
tion AD biomarker, we also train SVM using empirical cortical
thickness and amyloid level. The classification performance is
quantified using accuracy, specificity, sensitivity, and F-score,
based on 5-fold cross-validation.

Table V shows the CN vs AD classification results (mean
and standard deviation) of different harmonic-based features
and empirical features. It is apparent that harmonic feature
based on our common harmonic waves � achieves the highest
score in classification accuracy, sensitivity, specificity, and
F-score over all other methods for both cortical thickness
or amyloid deposition, where the star ’∗’ indicates that our
results are significantly better (p < 0.01) than the counterpart
method ranked at the second place. It is worth noting that our
new harmonic-based feature representations outperform empir-
ical biomarker features, which indicate the great potential of
applying our harmonic analysis approach in the early diagnosis
of AD.
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Fig. 7. Harmonic alterations among CN, MCI and AD identified using the
learned common harmonics � on cortical thickness. (a)-(b): Significant
difference of total harmonic energy has been detected among CN, MCI
and AD. (c): Harmonic waves exhibiting significant energy difference
between CN and AD cohorts. (d): The plot of CN-to-AD energy difference
of each harmonic wave.

5) Identifying Frequency-BasedHarmonic Alterations in Corti-
cal Thickness: A plethora of neuroimaging studies found mor-
phometry differences between CN and AD cohorts. Due to the
correlation between our common harmonic waves � and the
neurodegeneration process as demonstrated in Section III.B3,
as well as its effective classification ability as verified in
Section III.B4, we explore the frequency-based alterations of
cortical thickness values from the testing data that are relevant
to AD progression by using the learned common harmonics
from the training data. First, we measure the total harmonic
energy of cortical thickness for each subject and plot the
statistics (mean and standard deviation) for CN, MCI, and
AD groups separately in Fig. 7(a), where the AD group
(15.9 ± 4.6) has significantly lower (p < 10−3) total energy
than both MCI group (18.9±3.7) and CN group (19.6±4.4).
There is no significant total energy difference ( p = 0.42)
between MCI group and CN group. However, it is worth
noting that empirical feature (cortical thickness) does not show
a significant difference (p = 0.44) between MCI and CN
cohorts either.

To verify the identified significant CN vs AD harmonic
energy difference is relevant to AD indeed, we randomly
shuffle the diagnostic labels 100 separate times in order to
deliberately break down the coherence between network data
and the associated diagnostic groups. After that, we fail to find
a significant difference by repeating the same statistical test
in our experiment (average p = 0.50), which indicates the
identified harmonic energy differences are relevant to AD.

Furthermore, we plot the distribution of total energy in
Fig. 7(b). These results support the evidence that neurode-
generation in AD subjects is associated with reduced neu-
roanatomical structural integrity. Second, we examine the
cross-sectional energy difference for each harmonic, where the
mean harmonic-specific energy for CN and AD are shown in

Fig. 8. Harmonic alterations among CN, MCI and AD identified using the
learned common harmonics� on amyloid deposition. (a)-(b): Significant
difference of total harmonic energy has been detected among CN, MCI
and AD. (c): Harmonic waves exhibiting significant energy difference
between CN and AD cohorts. (d): The plot of CN-to-AD energy difference
of each harmonic wave.

the outer and inner rings in Fig. 7(c). In addition, the Fisher
score JF (the ratio between inter-class mean and intra-class
variance) of the harmonic-specific energy between CN and
AD subjects is shown in the outermost ring in Fig. 7(c), where
the harmonic waves exhibiting significant energy differences
are tagged with a red star ’∗’. The CN-to-AD difference
magnitude at each harmonic wave is displayed in Fig. 7(d).
These significant harmonic waves may be critically important
in determining the propagation of neuropathological burdens
across the brain networks.

6) Identifying Frequency-Based Harmonic Alterations in Amy-
loid Deposition: Similarly, we calculate the total harmonic
energy of the amyloid deposition for each subject and plot the
results in Fig. 8(a) and (b), where the AD group (4.41±1.85)
has significantly higher (p < 10−3) total energy than both
the MCI group (3.46 ± 1.08) and CN group (3.19 ± 1.40).
In addition, we show the statistical significance in energy
difference and the CN vs AD energy difference magnitude for
each harmonic wave in Fig. 8(c) and (d), where there are a
total of 15 harmonic waves exhibiting significant difference
(p < 0.01) between CN and AD, in terms of harmonic
energy of amyloid deposition. These results suggest that the
aggregation of amyloid peptides is associated with topological
features of the brain networks that underlie the network
harmonics.

7) Discussions: The deposition of amyloid plaques is one
of the hallmarks of AD. Both human and animal data suggest
a causal upstream role for amyloid-β in the pathogenesis of
AD, which may be sufficient to cause downstream pathologic
changes leading to cognitive decline [39]. Our finding of
frequency-based harmonic alterations in amyloid deposition
complements the current neuroscience and clinical literature,
with the AD population having greater amyloid harmonic
energy than the CN group (Fig. 8(d)). Similarly, reductions
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Fig. 9. The spatial pattern of significant harmonic waves in the context of
cortical thickness (blue box), and amyloid deposition (purple box). Their
shared harmonic waves are displayed in the red box.

in cortical thickness are thought to reflect neuro-degeneration
associated with AD progression. As shown in Fig 7(d),
CN subjects have more cortical thickness harmonic energy
than AD subjects in most of the harmonic frequency bands,
which indicates that degeneration (structural atrophy) is more
profound in the AD than the CN cohort.

Furthermore, we found 16 harmonic waves for cortical
thickness and 15 out of 60 common harmonic waves for
amyloid that were significant differences between CN and AD.
We display the oscillation pattern of the identified harmonic
waves for neuro-degeneration (cortical thickness) and amyloid
deposition in Fig. 9, where the shared harmonic waves by the
cortical thickness and amyloid deposition are shown at the
top. In addition, the top 4 significant harmonic waves with
the smallest p-value specific to cortical thickness and amyloid
burden are shown in middle and bottom in Fig. 9, respectively.

Different neurodegenerative diseases exhibit distinct
network alteration patterns [3]. For example, AD is
associated with atrophy and hypometabolism in the posterior
hippocampal, cingulate, temporal, and parietal regions, which
collectively resemble the default mode network (DMN)
[40], [41]. In contrast to AD, behavior variant frontotemporal
dementia (bvFTD) preferentially affects the salience network
(SN) [3], [40]. Here, we examine the association between
the oscillation pattern and these large-scale networks. First,
we mark the location of the top ten crossing-zeros in each
harmonic wave which has the largest difference magnitude.
In general, 22-24% of the crossing-zeros are found falling in
the DMN, compared to only 2% of them are associated with

Fig. 10. The spatial alignment of crossing-zeros in the identified
significant common harmonic waves with respect to default mode net-
work and salience network. Left: nodes belong to DMN and salience
network. Middle: in the context of cortical thickness. Right: in the context
of amyloid deposition.

the SN. Second, we calculate the frequency of each node
being touched by the crossing-zeros across all significant
harmonic waves. We show the node frequency maps by
cortical thickness and amyloid in the middle and right of
Fig. 10, respectively. It is clear that much more crossing-zeros
are associated with DMN (top) than SN (bottom), which is
aligned with the current findings in AD.

IV. CONCLUSION

In this paper, we present a new network harmonic analysis
approach that offers a new window into the investigation of
frequency-based alterations in different clinical and research
study populations. To achieve this, we propose a manifold
optimization method to find the set of common harmonic
waves from the native Eigen-systems of individual brain
networks. The resulting shared reference space spanned by the
common harmonic waves allows us to quantify the individual
kinetic differences in terms of propagating neuro-pathological
events across brain networks. We have evaluated the power of
the common harmonic waves in discovering harmonic-specific
alterations between CN and AD. More consistent and reason-
able results were achieved by our manifold learning method,
than by existing methods based on Euclidean operations on
the manifold data.

In the future, we plan to apply our new network harmonic
analysis approach to other neurological disorders that manifest
network dysfunctions such as frontotemporal dementia and
schizophrenia.
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